Rheology of red blood cell aggregation by computer simulation

نویسندگان

  • Yaling Liu
  • Wing Kam Liu
چکیده

The aggregation of red blood cells (RBC) induced by the interactions between RBCs is a dominant factor of the in vitro rheological properties of blood, and existing models of blood do not contain full cellular information. In this work, we introduce a new three-dimensional model that couples Navier–Stokes equations with cell interactions to investigate RBC aggregation and its effect on blood rheology. It consists of a depletion mediated aggregation model to describe the interactions of RBCs and an immersed continuum model to track the deformation/motion of RBCs in blood plasma. To overcome the large deformation of RBCs, the meshfree method is used to model the RBCs. Three important phenomena in blood rheology are successfully captured and studied via this approach: the shear rate dependence of blood viscosity, the influence of cell rigidity on blood viscosity, and the Fahraeus–Lindqvist effect. As a microscopic illustration of the shear-rate dependence of the blood’s viscoelasticity, the disaggregation of an RBC rouleau at shear rates varying between 0.125 and 24 s 1 is modeled. Lower RBC deformability and higher shear rates above 0.5 s 1 are found to facilitate disaggregation. The effective viscosities at different shear rates and for cells with different deformabilities are simulated. The numerical results are shown to agree with the reported experimental measurements. The Fahraeus–Lindqvist effect is, for the first time, studied through three-dimensional numerical simulations of blood flow through tubes with different diameters and is shown to be directly linked to axial-migration of deformable cells. This study shows that cell–cell interaction and cell deformability have significant effects on blood rheology in capillaries. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blood rheology in lupus erythematosus.

Blood rheology is one of the determinants of perfusion and might therefore have an impact on the thromboembolic complications of lupus erythematosus. This study aimed at defining the flow properties of blood in patients with various types of lupus erythematosus. Results for 51 patients were compared with those for 20 controls matched for sex. The patients were divided into subgroups--chronic di...

متن کامل

A Two-Dimensional Numerical Investigation of Transport of Malaria-Infected Red Blood Cells in Stenotic Microchannels

The malaria-infected red blood cells experience a significant decrease in cell deformability and increase in cell membrane adhesion. Blood hemodynamics in microvessels is significantly affected by the alteration of the mechanical property as well as the aggregation of parasitized red blood cells. In this study, we aim to numerically study the connection between cell-level mechanobiological prop...

متن کامل

Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics‡

The red blood cell (RBC) aggregation plays an important role in many physiological phenomena, in particular the atherosclerosis and thrombotic processes. In this research, we introduce a new modelling technique that couples Navier–Stokes equations with protein molecular dynamics to investigate the behaviours of RBC aggregates and their e ects on the blood rheology. In essence, the Lagrangian so...

متن کامل

Microvascular rheology and hemodynamics.

The goal of elucidating the biophysical and physiological basis of pressure-flow relations in the microcirculation has been a recurring theme since the first observations of capillary blood flow in living tissues. At the birth of the Microcirculatory Society, seminal observations on the heterogeneous distribution of blood cells in the microvasculature and the rheological properties of blood in ...

متن کامل

Rheological effects of red blood cell aggregation in the venous network: a review of recent studies.

It has long been recognized that understanding the rheological properties of blood is essential to a full understanding of the function of the circulatory system. Given the difficulty of obtaining carefully controlled measurements in vivo, most of our current concepts of the flow behavior of blood in vivo are based on its properties in vitro. Studies of blood rheology in rotational and tube vis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 220  شماره 

صفحات  -

تاریخ انتشار 2006